Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.115
Filtrar
1.
Exp Physiol ; 109(1): 27-34, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37029664

RESUMO

Hereditary sensory and autonomic neuropathy type III (HSAN III), also known as familial dysautonomia or Riley-Day syndrome, results from an autosomal recessive genetic mutation that causes a selective loss of specific sensory neurones, leading to greatly elevated pain and temperature thresholds, poor proprioception, marked ataxia and disturbances in blood pressure control. Stretch reflexes are absent throughout the body, which can be explained by the absence of functional muscle spindle afferents - assessed by intraneural microelectrodes inserted into peripheral nerves in the upper and lower limbs. This also explains the greatly compromised proprioception at the knee joint, as assessed by passive joint-angle matching. Moreover, there is a tight correlation between loss of proprioceptive acuity at the knee and the severity of gait impairment. Surprisingly, proprioception is normal at the elbow, suggesting that participants are relying more on sensory cues from the overlying skin; microelectrode recordings have shown that myelinated tactile afferents in the upper and lower limbs appear to be normal. Nevertheless, the lack of muscle spindles does affect sensorimotor control in the upper limb: in addition to poor performance in the finger-to-nose test, manual performance in the Purdue pegboard task is much worse than in age-matched healthy controls. Unlike those rare individuals with large-fibre sensory neuropathy, in which both muscle spindle and cutaneous afferents are absent, those with HSAN III present as a means of assessing sensorimotor control following the selective loss of muscle spindle afferents.


Assuntos
Disautonomia Familiar , Fusos Musculares , Humanos , Fusos Musculares/fisiologia , Nervos Periféricos , Reflexo de Estiramento , Joelho
2.
Exp Physiol ; 109(1): 135-147, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36951012

RESUMO

By translating mechanical forces into molecular signals, proprioceptive neurons provide the CNS with information on muscle length and tension, which is necessary to control posture and movement. However, the identities of the molecular players that mediate proprioceptive sensing are largely unknown. Here, we confirm the expression of the mechanosensitive ion channel ASIC2 in proprioceptive sensory neurons. By combining in vivo proprioception-related functional tests with ex vivo electrophysiological analyses of muscle spindles, we showed that mice lacking Asic2 display impairments in muscle spindle responses to stretch and motor coordination tasks. Finally, analysis of skeletons of Asic2 loss-of-function mice revealed a specific effect on spinal alignment. Overall, we identify ASIC2 as a key component in proprioceptive sensing and a regulator of spine alignment.


Assuntos
Canais Iônicos Sensíveis a Ácido , Propriocepção , Animais , Camundongos , Canais Iônicos Sensíveis a Ácido/metabolismo , Fusos Musculares/fisiologia , Propriocepção/fisiologia , Células Receptoras Sensoriais/metabolismo
3.
Exp Physiol ; 109(1): 35-44, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119460

RESUMO

Our objective was to evaluate an ex vivo muscle-nerve preparation used to study mechanosensory signalling by low threshold mechanosensory receptors (LTMRs). Specifically, we aimed to assess how well the ex vivo preparation represents in vivo firing behaviours of the three major LTMR subtypes of muscle primary sensory afferents, namely type Ia and II muscle spindle (MS) afferents and type Ib tendon organ afferents. Using published procedures for ex vivo study of LTMRs in mouse hindlimb muscles, we replicated earlier reports on afferent firing in response to conventional stretch paradigms applied to non-contracting, that is passive, muscle. Relative to in vivo studies, stretch-evoked firing for confirmed MS afferents in the ex vivo preparation was markedly reduced in firing rate and deficient in encoding dynamic features of muscle stretch. These deficiencies precluded conventional means of discriminating type Ia and II afferents. Muscle afferents, including confirmed Ib afferents were often indistinguishable based on their similar firing responses to the same physiologically relevant stretch paradigms. These observations raise uncertainty about conclusions drawn from earlier ex vivo studies that either attribute findings to specific afferent types or suggest an absence of treatment effects on dynamic firing. However, we found that replacing the recording solution with bicarbonate buffer resulted in afferent firing rates and profiles more like those seen in vivo. Improving representation of the distinctive sensory encoding properties in ex vivo muscle-nerve preparations will promote accuracy in assigning molecular markers and mechanisms to heterogeneous types of muscle mechanosensory neurons.


Assuntos
Fusos Musculares , Tendões , Camundongos , Animais , Fusos Musculares/fisiologia , Transdução de Sinais , Neurônios , Neurônios Aferentes/fisiologia
4.
Exp Brain Res ; 242(1): 59-66, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37955706

RESUMO

Tendon vibration is used extensively to assess the role of peripheral mechanoreceptors in motor control, specifically, the muscle spindles. Periodic tendon vibration is known to activate muscle spindles and induce a kinesthetic illusion that the vibrated muscle is longer than it actually is. Noisy tendon vibration has been used to assess the frequency characteristics of proprioceptive reflex pathways during standing; however, it is unknown if it induces the same kinesthetic illusions as periodic vibration. The purpose of the current study was to assess the effects of both periodic and noisy tendon vibration in a kinesthetic targeting task. Participants (N = 15) made wrist extension movements to a series of visual targets without vision of the limb, while their wrist flexors were either vibrated with periodic vibration (20, 40, 60, 80, and 100 Hz), or with noisy vibration which consisted of filtered white noise with power between ~ 20 and 100 Hz. Overall, our results indicate that both periodic and noisy vibration can induce robust targeting errors during a wrist targeting task. Specifically, the vibration resulted in an undershooting error when moving to the target. The findings from this study have important implications for the use of noisy tendon vibration to assess proprioceptive reflex pathways and should be considered when designing future studies using noisy vibration.


Assuntos
Ilusões , Vibração , Humanos , Tendões/fisiologia , Cinestesia/fisiologia , Propriocepção/fisiologia , Fusos Musculares/fisiologia , Movimento/fisiologia , Ilusões/fisiologia , Músculo Esquelético/fisiologia
5.
Exp Physiol ; 109(1): 148-158, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856330

RESUMO

Muscle spindles relay vital mechanosensory information for movement and posture, but muscle spindle feedback is coupled to skeletal motion by a compliant tendon. Little is known about the effects of tendon compliance on muscle spindle feedback during movement, and the complex firing of muscle spindles makes these effects difficult to predict. Our goal was to investigate changes in muscle spindle firing using added series elastic elements (SEEs) to mimic a more compliant tendon, and to characterize the accompanying changes in firing with respect to muscle-tendon unit (MTU) and muscle fascicle displacements (recorded via sonomicrometry). Sinusoidal, ramp-and-hold and triangular stretches were analysed to examine potential changes in muscle spindle instantaneous firing rates (IFRs) in locomotor- and perturbation-like stretches as well as serial history dependence. Added SEEs effectively reduced overall MTU stiffness and generally reduced muscle spindle firing rates, but the effect differed across stretch types. During sinusoidal stretches, peak and mean firing rates were not reduced and IFR was best-correlated with fascicle velocity. During ramp stretches, SEEs reduced the initial burst, dynamic and static responses of the spindle. Notably, IFR was negatively related to fascicle displacement during the hold phase. During triangular stretches, SEEs reduced the mean IFR during the first and second stretches, affecting the serial history dependence of mean IFR. Overall, these results demonstrate that tendon compliance may attenuate muscle spindle feedback during movement, but these changes cannot be fully explained by reduced muscle fascicle length or velocity, or MTU force.


Assuntos
Fusos Musculares , Músculo Esquelético , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Tendões/fisiologia , Movimento , Postura
6.
Exp Physiol ; 109(1): 112-124, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37428622

RESUMO

Computational models can be critical to linking complex properties of muscle spindle organs to the sensory information that they encode during behaviours such as postural sway and locomotion where few muscle spindle recordings exist. Here, we augment a biophysical muscle spindle model to predict the muscle spindle sensory signal. Muscle spindles comprise several intrafusal muscle fibres with varied myosin expression and are innervated by sensory neurons that fire during muscle stretch. We demonstrate how cross-bridge dynamics from thick and thin filament interactions affect the sensory receptor potential at the spike initiating region. Equivalent to the Ia afferent's instantaneous firing rate, the receptor potential is modelled as a linear sum of the force and rate change of force (yank) of a dynamic bag1 fibre and the force of a static bag2/chain fibre. We show the importance of inter-filament interactions in (i) generating large changes in force at stretch onset that drive initial bursts and (ii) faster recovery of bag fibre force and receptor potential following a shortening. We show how myosin attachment and detachment rates qualitatively alter the receptor potential. Finally, we show the effect of faster recovery of receptor potential on cyclic stretch-shorten cycles. Specifically, the model predicts history-dependence in muscle spindle receptor potentials as a function of inter-stretch interval (ISI), pre-stretch amplitude and the amplitude of sinusoidal stretches. This model provides a computational platform for predicting muscle spindle response in behaviourally relevant stretches and can link myosin expression seen in healthy and diseased intrafusal muscle fibres to muscle spindle function.


Assuntos
Fibras Musculares Esqueléticas , Fusos Musculares , Fusos Musculares/fisiologia , Células Receptoras Sensoriais , Sarcômeros , Miosinas/metabolismo
7.
Exp Physiol ; 109(1): 6-16, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36628601

RESUMO

This paper is in two parts: 'There', which is a review of some of the major advances in the study of spindle structure and function during the past 50 years, serving as an introduction to the symposium entitled 'Mechanotransduction, Muscle Spindles and Proprioception' held in Munich in July 2022; and 'And Back Again', presenting new quantitative morphological results on the equatorial nuclei of intrafusal muscle fibres and of the primary sensory ending in relationship to passive stretch of the spindle.


Assuntos
Mecanotransdução Celular , Fibras Musculares Esqueléticas , Fusos Musculares/fisiologia
8.
Exp Physiol ; 109(1): 125-134, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36827200

RESUMO

We recently showed that within an intact muscle compartment, changing the length of one muscle affects the firing behaviour of muscle spindles located within a neighbouring muscle. The conditions tested, however, involved muscle lengths and relative positions that were beyond physiological ranges. The aim of the present study was to investigate the effects of simulated knee movements on the firing behaviour of muscle spindles located within rat soleus (SO) muscle. Firing from single muscle spindle afferents in SO was measured intra-axonally for different lengths (static) and during lengthening (dynamic) of the lateral gastrocnemius and plantaris muscles. Also, the location of the spindle within the muscle was assessed. Changing the length of synergistic ankle plantar flexors (simulating different static knee positions, between 45 and 130°) affected the force threshold, but not the length threshold, of SO muscle spindles. The effects on type II afferents were substantially (four times) higher than those on type IA afferents. Triangular stretch-shortening of synergistic muscles (simulating dynamic knee joint rotations of 15°) caused sudden changes in the firing rate of SO type IA and II afferents. Lengthening decreased and shortening increased the firing rate, independent of spindle location. This supports our prediction that the major point of application of forces exerted by connections between adjacent muscles is at the distal end of SO. We conclude that muscle spindles provide the CNS with information about the condition of adjacent joints that the muscle does not span.


Assuntos
Tornozelo , Fusos Musculares , Humanos , Ratos , Animais , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Joelho , Articulação do Joelho/fisiologia
9.
Exp Physiol ; 109(1): 55-65, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36966478

RESUMO

Muscle spindles encode mechanosensory information by mechanisms that remain only partially understood. Their complexity is expressed in mounting evidence of various molecular mechanisms that play essential roles in muscle mechanics, mechanotransduction and intrinsic modulation of muscle spindle firing behaviour. Biophysical modelling provides a tractable approach to achieve more comprehensive mechanistic understanding of such complex systems that would be difficult/impossible by more traditional, reductionist means. Our objective here was to construct the first integrative biophysical model of muscle spindle firing. We leveraged current knowledge of muscle spindle neuroanatomy and in vivo electrophysiology to develop and validate a biophysical model that reproduces key in vivo muscle spindle encoding characteristics. Crucially, to our knowledge, this is the first computational model of mammalian muscle spindle that integrates the asymmetric distribution of known voltage-gated ion channels (VGCs) with neuronal architecture to generate realistic firing profiles, both of which seem likely to be of great biophysical importance. Results predict that particular features of neuronal architecture regulate specific characteristics of Ia encoding. Computational simulations also predict that the asymmetric distribution and ratios of VGCs is a complementary and, in some instances, orthogonal means to regulate Ia encoding. These results generate testable hypotheses and highlight the integral role of peripheral neuronal structure and ion channel composition and distribution in somatosensory signalling.


Assuntos
Mecanotransdução Celular , Fusos Musculares , Animais , Fusos Musculares/fisiologia , Neurônios , Canais Iônicos , Fenômenos Eletrofisiológicos , Mamíferos
10.
Exp Physiol ; 109(1): 100-111, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103003

RESUMO

The goals of this review are to improve understanding of the aetiology of chronic muscle pain and identify new targets for treatments. Muscle pain is usually associated with trigger points in syndromes such as fibromyalgia and myofascial syndrome, and with small spots associated with spontaneous electrical activity that seems to emanate from fibers inside muscle spindles in EMG studies. These observations, added to the reports that large-diameter primary afferents, such as those innervating muscle spindles, become hyperexcitable and develop spontaneous ectopic firing in conditions leading to neuropathic pain, suggest that changes in excitability of these afferents might make an important contribution to the development of pathological pain. Here, we review evidence that the muscle spindle afferents (MSAs) of the jaw-closing muscles become hyperexcitable in a model of chronic orofacial myalgia. In these afferents, as in other large-diameter primary afferents in dorsal root ganglia, firing emerges from fast membrane potential oscillations that are supported by a persistent sodium current (INaP ) mediated by Na+ channels containing the α-subunit NaV 1.6. The current flowing through NaV 1.6 channels increases when the extracellular Ca2+ concentration decreases, and studies have shown that INaP -driven firing is increased by S100ß, an astrocytic protein that chelates Ca2+ when released in the extracellular space. We review evidence of how astrocytes, which are known to be activated in pain conditions, might, through their regulation of extracellular Ca2+ , contribute to the generation of ectopic firing in MSAs. To explain how ectopic firing in MSAs might cause pain, we review evidence supporting the hypothesis that cross-talk between proprioceptive and nociceptive pathways might occur in the periphery, within the spindle capsule.


Assuntos
Dor Crônica , Neuralgia , Humanos , Fusos Musculares/fisiologia , Mialgia , Potenciais da Membrana , Neurônios Aferentes/fisiologia
12.
Trends Neurosci ; 46(12): 1083-1094, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858440

RESUMO

Proprioception, the sense of body position in space, has a critical role in the control of posture and movement. Aside from skin and joint receptors, the main sources of proprioceptive information in tetrapods are mechanoreceptive end organs in skeletal muscle: muscle spindles (MSs) and Golgi tendon organs (GTOs). The sensory neurons that innervate these receptors are divided into subtypes that detect discrete aspects of sensory information from muscles with different biomechanical functions. Despite the importance of proprioceptive neurons in motor control, the developmental mechanisms that control the acquisition of their distinct functional properties and positional identity are not yet clear. In this review, we discuss recent findings on the development of mouse proprioceptor subtypes and challenges in defining them at the molecular and functional level.


Assuntos
Mecanorreceptores , Células Receptoras Sensoriais , Camundongos , Animais , Células Receptoras Sensoriais/fisiologia , Mecanorreceptores/fisiologia , Fusos Musculares/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Propriocepção/fisiologia
13.
Exp Brain Res ; 241(10): 2433-2450, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37653105

RESUMO

The sense of limb position is important, because it is believed to contribute to our sense of self-awareness. Muscle spindles, including both primary and secondary endings of spindles, are thought to be the principal position sensors. Passive spindles possess a property called thixotropy which allows their sensitivity to be manipulated. Here, thixotropic patterns of position errors have been studied with three commonly used methods of measurement of position sense. The patterns of errors have been used as indicators of the influence exerted by muscle spindles on a measured value of position sense. In two-arm matching, the blindfolded participant indicates the location of one arm by placement of the other. In one-arm pointing, the participant points to the perceived position of their other, hidden arm. In repositioning, one of the blindfolded participant's arms is placed at a chosen angle and they are asked to remember its position and then, after a delay, reproduce the position. The three methods were studied over the full range of elbow angles between 5° (elbow extension) and 125° (elbow flexion). Different outcomes were achieved with each method; in two-arm matching, position errors were symmetrical about zero and thixotropic influences were large, while in one-arm pointing, errors were biased towards extension. In repositioning, thixotropic effects were small. We conclude that each of the methods of measuring position sense comprises different mixes of peripheral and central influences. This will have to be taken into consideration by the clinician diagnosing disturbances in position sense.


Assuntos
Articulação do Cotovelo , Fusos Musculares , Humanos , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Propriocepção/fisiologia
14.
J Physiol ; 601(16): 3453-3459, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37288474

RESUMO

Effort perception is widely acknowledged to originate from central processes within the brain, mediated by the integration of an efference copy of motor commands in sensory areas. However, in this topical review, we aim to challenge this perspective by presenting evidence from neural mechanisms and empirical studies that suggest that reafferent signals from muscle spindles also play a significant role in effort perception. It is now imperative for future research (a) to investigate the precise mechanisms underlying the interactions between the efference copy and reafferent spindle signals in the generation of effort perception, and (b) to explore the potential for altering spindle sensitivity to affect perceived effort during ecological physical exercise and, subsequently, influence physical activity behaviours.


Assuntos
Encéfalo , Fusos Musculares , Fusos Musculares/fisiologia
15.
Elife ; 122023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254843

RESUMO

Biological motor control is versatile, efficient, and depends on proprioceptive feedback. Muscles are flexible and undergo continuous changes, requiring distributed adaptive control mechanisms that continuously account for the body's state. The canonical role of proprioception is representing the body state. We hypothesize that the proprioceptive system could also be critical for high-level tasks such as action recognition. To test this theory, we pursued a task-driven modeling approach, which allowed us to isolate the study of proprioception. We generated a large synthetic dataset of human arm trajectories tracing characters of the Latin alphabet in 3D space, together with muscle activities obtained from a musculoskeletal model and model-based muscle spindle activity. Next, we compared two classes of tasks: trajectory decoding and action recognition, which allowed us to train hierarchical models to decode either the position and velocity of the end-effector of one's posture or the character (action) identity from the spindle firing patterns. We found that artificial neural networks could robustly solve both tasks, and the networks' units show tuning properties similar to neurons in the primate somatosensory cortex and the brainstem. Remarkably, we found uniformly distributed directional selective units only with the action-recognition-trained models and not the trajectory-decoding-trained models. This suggests that proprioceptive encoding is additionally associated with higher-level functions such as action recognition and therefore provides new, experimentally testable hypotheses of how proprioception aids in adaptive motor control.


Assuntos
Postura , Propriocepção , Animais , Humanos , Propriocepção/fisiologia , Redes Neurais de Computação , Fusos Musculares/fisiologia , Neurônios
16.
Exp Brain Res ; 241(4): 943-949, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36869268

RESUMO

In the past, the peripheral sense organs responsible for generating human position sense were thought to be the slowly adapting receptors in joints. More recently, our views have changed and the principal position sensor is now believed to be the muscle spindle. Joint receptors have been relegated to the lesser role of acting as limit detectors when movements approach the anatomical limit of a joint. In a recent experiment concerned with position sense at the elbow joint, measured in a pointing task over a range of forearm angles, we have observed falls in position errors as the forearm was moved closer to the limit of extension. We considered the possibility that as the arm approached full extension, a population of joint receptors became engaged and that they were responsible for the changes in position errors. Muscle vibration selectively engages signals of muscle spindles. Vibration of elbow muscles undergoing stretch has been reported to lead to perception of elbow angles beyond the anatomical limit of the joint. The result suggests that spindles, by themselves, cannot signal the limit of joint movement. We hypothesise that over the portion of the elbow angle range where joint receptors become active, their signals are combined with those of spindles to produce a composite that contains joint limit information. As the arm is extended, the growing influence of the joint receptor signal is evidenced by the fall in position errors.


Assuntos
Articulação do Cotovelo , Propriocepção , Humanos , Propriocepção/fisiologia , Músculo Esquelético/fisiologia , Fusos Musculares/fisiologia , Movimento/fisiologia , Cotovelo/fisiologia
17.
Elife ; 122023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744866

RESUMO

The proprioceptive system is essential for the control of coordinated movement, posture, and skeletal integrity. The sense of proprioception is produced in the brain using peripheral sensory input from receptors such as the muscle spindle, which detects changes in the length of skeletal muscles. Despite its importance, the molecular composition of the muscle spindle is largely unknown. In this study, we generated comprehensive transcriptomic and proteomic datasets of the entire muscle spindle isolated from the murine deep masseter muscle. We then associated differentially expressed genes with the various tissues composing the spindle using bioinformatic analysis. Immunostaining verified these predictions, thus establishing new markers for the different spindle tissues. Utilizing these markers, we identified the differentiation stages the spindle capsule cells undergo during development. Together, these findings provide comprehensive molecular characterization of the intact spindle as well as new tools to study its development and function in health and disease.


Assuntos
Multiômica , Fusos Musculares , Camundongos , Animais , Fusos Musculares/fisiologia , Proteômica , Músculo Esquelético/fisiologia , Propriocepção/fisiologia
18.
Sci Rep ; 13(1): 2830, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36806712

RESUMO

Across the human body, skeletal muscles have a broad range of biomechanical roles that employ complex proprioceptive control strategies to successfully execute a desired movement. This information is derived from peripherally located sensory apparatus, the muscle spindle and Golgi tendon organs. The abundance of these sensory organs, particularly muscle spindles, is known to differ considerably across individual muscles. Here we present a comprehensive data set of 119 muscles across the human body including architectural properties (muscle fibre length, mass, pennation angle and physiological cross-sectional area) and statistically test their relationships with absolute spindle number and relative spindle abundance (the residual value of the linear regression of the log-transformed spindle number and muscle mass). These data highlight a significant positive relationship between muscle spindle number and fibre length, emphasising the importance of fibre length as an input into the central nervous system. However, there appears to be no relationship between muscles architecturally optimised to function as displacement specialists and their provision of muscle spindles. Additionally, while there appears to be regional differences in muscle spindle abundance, independent of muscle mass and fibre length, our data provide no support for the hypothesis that muscle spindle abundance is related to anatomical specialisation.


Assuntos
Fusos Musculares , Músculo Esquelético , Humanos , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Mecanorreceptores/fisiologia , Propriocepção/fisiologia , Movimento/fisiologia
19.
J Exp Biol ; 226(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36576050

RESUMO

Animals move across a wide range of surface conditions in real-world environments to acquire resources and avoid predation. To effectively navigate a variety of surfaces, animals rely on several mechanisms including intrinsic mechanical responses, spinal-level central pattern generators, and neural commands that require sensory feedback. Muscle spindle Ia afferents play a critical role in providing sensory feedback and informing motor control strategies across legged vertebrate locomotion, which is apparent in cases where this sensory input is compromised. Here, we tested the hypothesis that spindle Ia afferents from hindlimb muscles are important for coordinating forelimb landing behavior in the cane toad. We performed bilateral sciatic nerve reinnervations to ablate the stretch reflex from distal hindlimb muscles while allowing for motor neuron recovery. We found that toads significantly delayed the onset and reduced the activation duration of their elbow extensor muscle following spindle Ia afferent ablation in the hindlimbs. However, reinnervated toads achieved similar elbow extension at touchdown to that of their pre-surgery state. Our results suggest that while toads likely tuned the activation timing of forelimb muscles in response to losing Ia afferent sensation from the hindlimbs they were likely able to employ compensatory strategies that allowed them to continue landing effectively with reduced sensory information during take-off. These findings indicate muscle spindle Ia afferents may contribute to tuning complex movements involving multiple limbs.


Assuntos
Extremidade Inferior , Fusos Musculares , Animais , Fusos Musculares/fisiologia , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Bufo marinus/fisiologia
20.
J Physiol ; 601(2): 275-285, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36510697

RESUMO

Muscle spindles, one of the two main classes of proprioceptors together with Golgi tendon organs, are sensory structures that keep the central nervous system updated about the position and movement of body parts. Although they were discovered more than 150 years ago, their function during movement is not yet fully understood. Here, we summarize the morphology and known functions of muscle spindles, with a particular focus on locomotion. Although certain properties such as the sensitivity to dynamic and static muscle stretch are long known, recent advances in molecular biology have allowed the characterization of the molecular mechanisms for signal transduction in muscle spindles. Building upon classic literature showing that a lack of sensory feedback is deleterious to locomotion, we bring to the discussion more recent findings that support a pivotal role of muscle spindles in maintaining murine and human locomotor robustness, defined as the ability to cope with perturbations. Yet, more research is needed to expand the existing mechanistic understanding of how muscle spindles contribute to the production of robust, functional locomotion in real world settings. Future investigations should focus on combining different animal models to identify, in health and disease, those peripheral, spinal and brain proprioceptive structures involved in the fine tuning of motor control when locomotion happens in challenging conditions.


Assuntos
Mecanorreceptores , Fusos Musculares , Camundongos , Humanos , Animais , Fusos Musculares/fisiologia , Mecanorreceptores/fisiologia , Propriocepção/fisiologia , Locomoção/fisiologia , Coluna Vertebral , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...